If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-2X+0.2=0
a = 1; b = -2; c = +0.2;
Δ = b2-4ac
Δ = -22-4·1·0.2
Δ = 3.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-\sqrt{3.2}}{2*1}=\frac{2-\sqrt{3.2}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+\sqrt{3.2}}{2*1}=\frac{2+\sqrt{3.2}}{2} $
| -3x-45=3(15x+3) | | 5+b+b=25 | | a+a+a=15 | | A+a+a=25 | | 84+9x=112+5x | | F3=3x2-8x+7 | | 1/2x^2+7x+10=0 | | 75+7x=95+5x | | 100+9x=120+7x | | y/9=11/8 | | 10y-7y-42=33y+60 | | 2/x+3/2x-1/2=3 | | -4/7x=2/5 | | y-0.7-4.2=3.3(y+6) | | 44=5x+9 | | P(2x-5)=x^2+x-2 | | 3(7x-5)-(2x+4)x2=0 | | 4x+3=-5x6 | | 3t-9t=18 | | x²-(7x+6)=x+59 | | 63+5x=65+4x | | 24(-1/3u-1/8)=24(-3/4u+5/8) | | n+35=23 | | 3/x+5/2=6 | | -10/7m=9 | | 8t=-69 | | 5y-23=6y+4y-17 | | X^-x=11 | | (x+7)(x+3)=x´2+10x+21 | | 0.06x=1.2 | | 5(3x−4)=8(x+2)+5 | | t/0.7+3=1.8 |